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Abstract

The steady and laminar mixed convection with a temperature-dependent viscosity in a vertical annular duct with uniform wall tem-
peratures is studied analytically. The flow is considered as purely axial and the fluid density is assumed to be a linear function of tem-
perature. Analytical expressions of the dimensionless velocity distribution, of the dimensionless pressure drop and of the Fanning friction
factors are determined. The importance of choosing the mean fluid temperature as the reference temperature in the definition of the dif-
ference between the pressure and the hydrostatic pressure is pointed out. The results show that the combined effects of buoyancy forces
and of a variable fluid viscosity on the cross-section-averaged Fanning friction factor may be important, and that negative values of this
quantity may occur.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The laminar mixed convection in vertical or inclined
ducts has been widely studied in the literature. Indeed, this
research area has several technical applications, such as
heat exchangers, cooling systems for electronic devices,
solar collectors. Interesting results of the researches on this
topic are collected in Refs. [1,2].

With reference to mixed convection in vertical or
inclined plane channels, the fully developed regime has
been studied analytically by Aung and Worku [3], Cheng
et al. [4], Hamadah and Wirtz [5], Barletta and Zanchini
[6–8]; the flow stability has been investigated numerically
by Chen and Chung [9,10]; the reversed flow has been stud-
ied experimentally by Gan et al. [11]. For mixed convection
in vertical rectangular ducts, the fully developed region has
been studied analytically by Barletta [12,13], while the
entrance region has been investigated numerically by
Cheng et al. [14,15]. The mixed convection in vertical or
inclined circular tubes has been studied analytically in Refs.
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[16–19]; numerically in Refs. [20–23]; experimentally by
Lavine et al. [24].

Some attention has been devoted also to mixed convec-
tion in vertical annular ducts. An analytical study of fully
developed mixed convection in a vertical annulus with a
uniform heat flux at each wall has been presented by
Rokerya and Iqbal [25]. The authors have studied the effect
of viscous dissipation on the Nusselt number with the fol-
lowing boundary conditions: outer wall heated and inner
adiabatic, inner wall heated and outer adiabatic, both walls
heated. Aung et al. [26] and Tson et al. [27] have presented
numerical investigations of mixed convection in the
entrance region of a vertical annular duct, with either inner
wall heated and outer adiabatic [26], or outer wall heated
and inner adiabatic [26], or both walls heated [26,27]. In
particular, in Ref. [27] the authors have pointed out that,
when both walls are heated, buoyancy forces may produce
a strong increase of the cross-section-averaged Fanning
friction factor in the entrance region of the duct, while this
effect becomes vanishing in the fully developed region. Bar-
letta [28] has studied analytically the fully developed mixed
convection of a power-law fluid with constant properties in
a vertical annular duct whose walls are kept at uniform but
different temperatures.
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Nomenclature

A;B dimensionless coefficients
D mean diameter, Eq. (10)
fi; fe; fm Fanning friction factors
fi0; fe0; fm0 forced convection contributions to Fanning

friction factors
fi1; fe1; fm1 free convection contributions to Fanning

friction factors
f ðrÞ; gðrÞ; hðrÞ dimensionless functions, Eq. (33)
g gravity acceleration
g magnitude of the gravity acceleration
Gr Grashof number, Eq. (9)
lðrÞ;mðrÞ dimensionless functions, Eq. (33)
p pressure
P difference between the pressure and the hydro-

static pressure, Eq. (5)
R radial coordinate
R1 radius of the inner wall
R2 radius of the outer wall
r dimensionless radial coordinate, Eq. (9)
Re Reynolds number, Eq. (9)
T temperature
T0 mean fluid temperature, Eq. (3)
T1 temperature of the inner wall
T2 temperature of the outer wall
Tr reference temperature
U velocity

U axial velocity
u dimensionless axial velocity, Eq. (9)
u0 forced convection contribution to u

u1 free convection contribution to u

uB; umB dimensionless velocities defined in Ref. [28]
u0B; um0B forced convection contributions to uB; umB

u1B; um1B free convection contributions to uB; umB

x unit vector along the duct axis
X axial coordinate

Greek symbols

c dimensionless parameter, Eq. (9)
f dimensionless parameter, Eq. (22)
h dimensionless temperature, Eq. (9)
K dimensionless parameter defined in Ref. [28]
k dimensionless pressure drop, Eq. (9)
k0 forced convection contribution to k
k1 free convection contribution to k
l dynamic viscosity
l0 dynamic viscosity for T ¼ T 0

lr dynamic viscosity for T ¼ T r

n dimensionless parameter, Eq. (22)
q mass density
q0 mass density for T ¼ T 0

U dimensionless viscosity, Eq. (9)
x dimensionless parameter, Eq. (9)
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The motivation for the present investigation is given by
the results found in Refs. [8,28]. In Ref. [8], the authors
have analyzed the combined action of buoyancy forces
and of variable viscosity on the velocity distribution and
on the Fanning friction factors, for a vertical or inclined
plane channel with uniform wall temperatures. The results
show that, while for an ideal fluid with constant viscosity
the cross-section-averaged Fanning friction factor is inde-
pendent of buoyancy forces, for a fluid with temperature-
dependent viscosity the viscous pressure drop depends on
the ratio between the Grashof number and the Reynolds
number. In Ref. [28], the author has shown that for a New-
tonian fluid which flows in a vertical annular duct with uni-
form wall temperatures, even in the scheme of constant
viscosity the cross-section-averaged Fanning friction factor
is sharply influenced by buoyancy forces.

In the present paper, the combined effect of buoyancy
forces and of a temperature-dependent viscosity on the
velocity distribution and on the Fanning friction factors
is studied analytically, with reference to the fully developed
laminar mixed convection in a vertical annular duct with
uniform wall temperatures. The results show that, in most
conditions, the variable viscosity enhances the dependence
of the viscous pressure drop on buoyancy. In some cases,
negative values of the cross-section-averaged Fanning fric-
tion factor occur. In fact, through the mechanism of flow
reversal, the heat flow from the warm to the cool wall
can act as a thermal pump, i.e., it can produce an increase
of the difference between the pressure and the hydrostatic
pressure along the flow direction.
2. Analytical solution

Let us consider the vertical annular duct represented in
Fig. 1 and refer to a cylindrical coordinate system
(X ;R;H), such that X is the duct axis. Let us refer to
steady, parallel and fully developed laminar flow; let us
assume that the internal wall, with radius R1, is kept at a
uniform and constant temperature T1, while the external
wall, with radius R2, is kept at a uniform and constant tem-
perature T2. The kind of flow considered implies that only
the X-component U of the velocity vector U is non-zero;
moreover, on account of the thermal boundary condition,
the fluid temperature T is independent of X. Let us assume
that the gravity acceleration, with a magnitude g, is oppo-
site to the unit vector x in the positive X direction, i.e., that

g ¼ �gx; ð1Þ

as is shown in Fig. 1. Finally, let us assume that the mass
density of the fluid is a linear function of temperature,
according to the equation of state



Fig. 1. Drawing of the duct.
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q ¼ q0½1� bðT � T 0Þ�: ð2Þ

In Eq. (2), T0 is the reference fluid temperature, q is the
fluid mass density, q0 is mass density at temperature T0

and b is the thermal expansion coefficient. As is suggested
in Ref. [6], we will choose as reference temperature the
mean fluid temperature in any cross-section of the duct,
i.e.,

T 0 ¼
2

R2
2 � R2

1

Z R2

R1

TRdR: ð3Þ

Since U ¼ ðU ; 0; 0Þ, the mass balance equation can be writ-
ten as

o

oX
ð.UÞ ¼ 0: ð4Þ

Since R is independent of X, Eq. (4) implies that
oU=oX ¼ 0. Thus, on account of the axial symmetry of
the problem, U depends only on R. Let us define the differ-
ence P between the pressure p and the hydrostatic pressure
as

P ¼ p þ q0gX : ð5Þ

The momentum balance equation in the radial direction
yields oP=oR ¼ 0, and ensures that P depends only on X.
The momentum balance equation in the axial direction
and the energy balance equation can be written as
.0gbðT � T 0Þ �
dP
dX
þ 1

R
d

dR
lR

dU
dR

� �
¼ 0; ð6Þ

d

dR
R

dT
dR

� �
¼ 0; ð7Þ

where l is the fluid viscosity. Eq. (7) shows that, since the
flow is purely axial and oU=oX ¼ 0, the temperature distri-
bution is the same as in the case of heat conduction, i.e., is
independent of the velocity field. By differentiating Eq. (6)
with respect to X, one obtains d2P=dX 2 ¼ 0 and proves
that dP/dX is a constant. The boundary conditions for U

and T are

UðR1Þ ¼ UðR2Þ ¼ 0; T ðR1Þ ¼ T 1; T ðR2Þ ¼ T 2: ð8Þ
Let us introduce the following dimensionless variables:

r ¼ R
R2

; c ¼ R1

R2

; u ¼ U
U 0

; h ¼ T � T 0

T 1 � T 2

;

x ¼ T 1 � T 0

T 1 � T 2

; k ¼ � D2

l0U 0

dP
dX

; Re ¼ q0U 0D
l0

;

Gr ¼ gb.2
0 T 1 � T 2ð ÞD3

l2
0

; U ¼ l
l0

: ð9Þ

In Eq. (9), l0 is the fluid viscosity at T ¼ T 0; D and U0 are
the mean diameter of the duct and the mean velocity of the
fluid, which can be expressed as

D ¼ 2R2ð1� cÞ; U 0 ¼
2

R2
2 � R2

1

Z R2

R1

URdR: ð10Þ

If U0 is positive, we will say that the flow is upward; if it is
negative, we will say that the flow is downward. From Eq.
(9) one obtains also

Gr
Re
¼ gb.0ðT 1 � T 2ÞD2

l0U 0

: ð11Þ

Clearly, Gr has the sign of T 1 � T 2, while Gr=Re has the
sign of ðT 1 � T 2Þ=U 0. By employing Eq. (9), one can write
Eqs. (6) and (7) in the dimensionless form

1

r
d

dr
Ur

du
dr

� �
¼ � 1

4ð1� cÞ2
Gr
Re

h� k

4ð1� cÞ2
; ð12Þ

d

dr
r

dh
dr

� �
¼ 0: ð13Þ

On account of Eqs. (8) and (9), the dimensionless boundary
conditions are

uðcÞ ¼ uð1Þ ¼ 0; hðcÞ ¼ x; hð1Þ ¼ x� 1: ð14Þ
The integration of Eq. (13), with the boundary condition
(14), yields

hðrÞ ¼ lnðrÞ
lnðcÞ þ x� 1: ð15Þ

From Eqs. (3) and (9), one obtains the following constraint
on h:Z 1

c
hðrÞr dr ¼ 0: ð16Þ
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Eqs. (15) and (16) yield

x ¼ 1

1� c2
þ 1

2 lnðcÞ : ð17Þ

From Eqs. (15) and (17) one obtains

hðrÞ ¼ lnðrÞ
lnðcÞ þ

c2

1� c2
þ 1

2 lnðcÞ : ð18Þ

In order to determine the dimensionless velocity field, one
must find an expression of U as a function of r. As in
Ref. [8], we will assume that the dependence of l on T is
described by the relation

ln
l
lr

¼ AðT � T rÞ þ BðT � T rÞ2; ð19Þ

where the reference temperature Tr will be chosen as
T r ¼ ðT 1 þ T 2Þ=2. Eq. (19) is an improvement of the expo-
nential relation between viscosity and temperature usually
considered in the literature, such as in Refs. [29,30]. As is
shown in Ref. [8]. Eq. (19) provides a very accurate descrip-
tion of the temperature dependence of viscosity for several
liquids, in temperature ranges of 40 K. For a given fluid,
the interpolation coefficients A and B depend only on the
extreme temperatures T2 and T1 of the interpolation range.
Eqs. (9) and (19) yield

U ¼ l
lr

lr

l0

¼ exp½AðT � T rÞ þ BðT � T rÞ2�
exp½AðT 0 � T rÞ þ BðT 0 � T rÞ2�

; ð20Þ

i.e.,

U ¼ expf½Aþ 2BðT 0 � T rÞ�ðT 1 � T 2Þhþ BðT 1 � T 2Þ2h2g:
ð21Þ

By introducing the dimensionless coefficients

n ¼ ½Aþ 2BðT 0 � T rÞ�ðT 1 � T 2Þ; f ¼ BðT 1 � T 2Þ2; ð22Þ

one can write Eq. (21) in the dimensionless form

U ¼ exp½nhþ fh2�: ð23Þ

Eqs. (18) and (23) yield

UðrÞ¼ exp
f

½lnðcÞ�2
½lnðrÞ�2þ n

lnðcÞþ
2f

lnðcÞ
c2

1� c2
þ 1

2lnðcÞ

� �
lnðrÞ

� �( )

� exp n
c2

1�c2
þ 1

2lnðcÞ

� �
þ f

c2

1� c2
þ 1

2lnðcÞ

� �2
( )

:

ð24Þ

By integrating Eq. (12) with UðrÞ given by Eq. (24) and
with the boundary condition (14), one obtains
uðrÞ¼ k

8ð1� cÞ2

R 1

c ½UðrÞ�
�1rdrR 1

c UðrÞr½ ��1dr

Z r

c
Uðr0Þr0½ ��1

dr0
(

�
Z r

c
Uðr0Þ½ ��1r0dr0

�

þGr
Re

1

4ð1� cÞ2

R 1

c UðrÞr½ ��1dr
R r

c hðr0Þr0dr0R 1

c ½UðrÞr�
�1dr

(

�
Z r

c
½Uðr0Þr0��1dr0�

Z r

c
½Uðr0Þr0��1dr0

Z r0

c
hðzÞzdz

)
;

ð25Þ

where r0 and z are integration variables. On account, of
Eqs. (10) and (9), the dimensionless velocity u(r) must fulfill
the constraintZ 1

c
uðrÞr dr ¼ 1� c2

2
: ð26Þ

By applying the constraint (26) to Eq. (25), one obtains the
expression of k. By substituting the latter in Eq. (25), one
finds the expression of u. After suitable simplifications,
which include the use of integration by parts, one obtains

k ¼ k0 þ
Gr
Re

k1; ð27Þ

k0 ¼
8ð1� c2Þð1� cÞ2gð1Þ

gð1Þlð1Þ � ½f ð1Þ�2
; ð28Þ

k1 ¼
2½f ð1Þhð1Þ � gð1Þmð1Þ�

gð1Þlð1Þ � ½f ð1Þ�2
; ð29Þ

u ¼ u0 þ
Gr
Re

u1; ð30Þ

u0 ¼
k0½f ð1ÞgðrÞ � gð1Þf ðrÞ�

8ð1� cÞ2gð1Þ
; ð31Þ

u1 ¼
k1½f ð1ÞgðrÞ � gð1Þf ðrÞ�

8ð1� cÞ2gð1Þ
þ hð1ÞgðrÞ � gð1ÞhðrÞ

4ð1� cÞ2gð1Þ
; ð32Þ

where

f ðrÞ ¼
Z r

c

zdz
UðzÞ ; gðrÞ ¼

Z r

c

dz
UðzÞz ;

hðrÞ ¼
Z r

c

dr0

Uðr0Þr0
Z r0

c
hðzÞzdz; lðrÞ ¼

Z r

c

z3 dz
UðzÞ ;

mðrÞ ¼
Z r

c

r0 dr0

Uðr0Þ

Z r0

c
hðzÞzdz:

ð33Þ

In the following, k will be called dimensionless pressure
drop. Eqs. (27)–(29) and (33) show that the dimensionless
pressure drop can be written as the sum of two terms.
The first term, k0, is the dimensionless pressure drop which
occurs in forced convection, i.e., when the ratio Gr=Re van-
ishes. The second term is proportional to Gr=Re through
the coefficient k1, which represents the influence of buoy-
ancy forces on the dimensionless pressure drop. Since k0

and k1 depend on c; n and f, then k depends on c; n; f and
Gr=Re. The parameters n and f describe the effect of the
temperature dependence of the dynamic viscosity. For a
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given fluid, these coefficients are determined by T 1; T 2 and
c. Similarly, Eqs. (28)–(32) show that u can be written as
the sum of two terms. The first term, u0, is the dimension-
less velocity which occurs in forced convection, while the
second term is proportional to Gr=Re through the coeffi-
cient u1, which represents the contribution of buoyancy
forces to the dimensionless velocity distribution.

For an annular duct, one can define the Fanning friction
factor at the inner wall, fi, and the Fanning friction factor
at the outer wall, fe, as follows:

fi ¼
2swðR1Þ
q0U 2

0

; ð34Þ

fe ¼ �
2swðR2Þ
q0U 2

0

; ð35Þ

where the shear stress at the inner wall swðR1Þ and the shear
stress at the outer wall swðR2Þ can be expressed as

swðR1Þ ¼ l
dU
dR

� �����
R¼R1

; swðR2Þ ¼ l
dU
dR

�� ����
R¼R2

: ð36Þ

From Eqs. (34)–(36), (9) and (10) one obtains

fiRe ¼ 4ð1� cÞUðcÞ du
dr

� �����
r¼c

; ð37Þ

feRe ¼ �4ð1� cÞUð1Þ du
dr

� �����
r¼1

: ð38Þ

If one multiplies Eq. (37) by c and adds the result to Eq.
(38), one obtains

UðcÞc du
dr

� �����
r¼c

� Uð1Þ du
dr

� �����
r¼1

¼ ðcfi þ feÞRe
4ð1� cÞ : ð39Þ

By integrating Eq. (12) over the duct cross-section and by
employing Eq. (16), one obtains

UðcÞc du
dr

� �����
r¼c

� Uð1Þ du
dr

� �����
r¼1

¼ k
ð1� c2Þ

8ð1� cÞ2
: ð40Þ

Clearly, Eqs. (39) and (40) yield

k ¼ 2ðcfi þ feÞRe
1þ c

: ð41Þ

If, as usual, one defines the cross-section-averaged Fanning
friction factor fm as

fm ¼
ficþ fe

1þ c
; ð42Þ

from Eqs. (41) and (42) one obtains

k ¼ 2f mRe: ð43Þ
Note that the proportionality between k and fmRe, stated
by Eq. (43), holds only if the mean temperature defined
by Eq. (3) is chosen as the reference fluid temperature,
i.e., if Eq. (16) holds. If one chooses a different reference
temperature, one determines a dimensionless pressure drop
which is not proportional to fmRe and thus has a poor
physical meaning. This argument supports the choice of
the reference fluid temperature recommended in Ref. [6].
By employing Eqs. (30)–(32), (37) and (38) one finds the
following expressions of fiRe and feRe:

fiRe ¼ fi0Reþ Gr
Re

fi1Re; ð44Þ

feRe ¼ fe0Reþ Gr
Re

fe1Re; ð45Þ

where

fi0Re ¼ k0½f ð1Þ � c2gð1Þ�
2cð1� cÞgð1Þ ; ð46Þ

fi1Re ¼ k1½f ð1Þ � c2gð1Þ� þ 2hð1Þ
2cð1� cÞgð1Þ ; ð47Þ

fe0Re ¼ � k0½f ð1Þ � gð1Þ�
2ð1� cÞgð1Þ ; ð48Þ

fe1Re ¼ � k1 f ð1Þ � gð1Þ½ � þ 2hð1Þ
2ð1� cÞgð1Þ : ð49Þ
3. Limiting case of constant viscosity

In order to check the validity of the solution presented
above, it is interesting to consider the limiting case of con-
stant viscosity, which has been studied in Ref. [28]. In the
limit of constant viscosity, i.e., U ¼ 1, from Eq. (33) one
obtains

f ðrÞ¼ r2� c2

2
; gðrÞ¼ ln

r
c
;

hðrÞ¼ ðc
2�1Þðc2� r2þ2r2 lnrÞ�2c2 lncðr2�1�2lnrþ2lncÞ

8ðc2�1Þ lnc
;

lð1Þ¼ 1� c4

4
; mð1Þ¼ c4�1�4c2 lnc

32lnc
:

ð50Þ

Eqs. (28), (29), (31), (32), (46)–(50) yield

k0¼
32ðc�1Þ2 lnc

1� c2�ð1þ c2Þ lnc
; ð51Þ

k1¼
lncð�1þ c4þ4c2 lncÞ�2ðc2�1Þ2

4ðc2�1Þ lnc½1� c2þð1þ c2Þ lnc� ; ð52Þ

u0¼
2½ðc2�1Þ lnr�ðr2�1Þ lnc�

1� c2þð1þ c2Þ lnc
; ð53Þ

u1¼
½ðc2�1Þ lnr�ðr2�1Þ lnc�½lncðc4�1þ4c2 lncÞ�2ðc2�1Þ2�

64ðc�1Þ3ð1þcÞðlncÞ2½1� c2þð1þ c2Þ lnc�

þðc
2�1Þ lnrð1�c2�2r2 lncÞþðr2�1Þ lncðc2�1þ2c2 lncÞ

32ðc�1Þ3ð1þcÞðlncÞ2
:

ð54Þ

fi0Re¼ 8ðc�1Þð1� c2þ2c2 lncÞ
c 1� c2þð1þ c2Þ lnc½ � ; ð55Þ

fi1Re¼ 1�5c2þ7c4�3c6þ2c2ð�3þ2c2þ c4�4lncÞ lnc

16ðc�1Þ2cð1þ cÞ lnc 1� c2þð1þ c2Þ lnðcÞ½ �
; ð56Þ

fe0Re¼ 8ðc�1Þðc2�1�2lncÞ
1� c2þð1þ c2Þ lnc

; ð57Þ

fe1Re¼ð3� c2Þðc2�1Þ2þð2þ4c2�6c4Þ lncþ8c4ðlncÞ2

16ðc�1Þ2ð1þ cÞ lnc 1�c2þð1þc2Þ lnc½ �
: ð58Þ
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The comparison of Eqs. (51)–(58) with the results presented
in Ref. [28] is not immediate, because the reference velocity
considered there is not the average velocity of the fluid in
any cross-section, but a quantity proportional to the vis-
cous pressure drop per unit length. In Ref. [28], a dimen-
sionless velocity that will be denoted by uB and a mean
dimensionless velocity that will be denoted by umB are de-
fined, and expressions of these quantities are reported, in
the form

uB ¼ u0B þ Ku1B; ð59Þ
umB ¼ um0B þ Kum1B; ð60Þ

where K is a dimensionless parameter related to the ratio
Gr=Re defined here by the equation

Gr
Re
¼ � K

umB

: ð61Þ

It can be easily proved that the following relations hold

u0 ¼
u0B

um0B

; u1 ¼ u0B

um1B

um0B

; ð62Þ

k0 ¼
1

2um0B

; k1 ¼
um1B

2um0B

: ð63Þ

By substituting in Eqs. (62) and (63) the expressions of
u0B; u1B; um0B and um1B reported in Ref. [28], one obtains
Eqs. (51)–(54). In a similar way, one can deduce Eqs.
(55)–(58) from the results presented in Ref. [28]. The agree-
ment of the results presented here with those reported in
Ref. [28], in the special case of a Newtonian fluid with con-
stant viscosity, provides a cross validation of these works.

4. Results

In the cases considered in this paper, the fluid flow is
purely axial while the heat now is purely radial, so that
no temperature change occurs in the flow direction and
the temperature distribution is the same as in the case of
pure conduction. Thus, the heat transfer problem has a
Table 1
Values of k0 with f ¼ 0:0

c n

�2.0 �1.5 �1.0 �0.5

0.050 41.11 41.29 41.67 42.28
0.100 42.57 42.77 43.17 43.80
0.150 43.53 43.73 44.11 44.72
0.200 44.28 44.45 44.80 45.37
0.250 44.90 45.04 45.35 45.86
0.300 45.43 45.54 45.79 46.24
0.350 45.90 45.96 46.16 46.56
0.400 46.32 46.33 46.48 46.81
0.500 47.04 46.96 47.00 47.21
0.600 47.65 47.47 47.41 47.50
0.700 48.16 47.90 47.73 47.72
0.800 48.61 48.25 47.99 47.88
0.900 49.00 48.56 48.21 48.01
0.999 49.34 48.81 48.38 48.10
trivial solution and will not be discussed. Moreover, ana-
lytical expressions of the velocity distribution, of the
dimensionless pressure drop and of the Fanning friction
factors have been provided. From these expressions, values
of k; fiRe; feRe and plots of the velocity distribution can be
easily obtained. Therefore, our discussion will illustrate
only the most important results; in particular, our attention
will be focused on the effect of buoyancy forces and of the
variable viscosity on the dimensionless pressure drop k,
which is proportional to fmRe, as is shown by Eq. (43).

Four different physical conditions will be considered:
internal wall heated and upward flow; internal wall heated
and downward flow; external wall heated and upward flow;
external wall heated and downward flow. As for the sign of
the coefficients n and f defined in Eq. (22), we will assume
that n has a sign opposite to that of T 1 � T 2 and f is posi-
tive. These assumptions hold for most liquids, in tempera-
ture ranges not too far from room temperatures. The
parameter Gr=Re has the sign of (T 1 � T 2Þ=U 0, where U0

is positive for upward flow and negative for downward
flow. Therefore, the physical conditions described above
correspond to the following signs of the dimensionless
parameters n and Gr=Re.

If the internal wall is heated, i.e., T 1 > T 2; n is negative,
while Gr=Re is positive for upward flow and negative for
downward flow. On the other hand, if the external wall is
heated, i.e., T 1 < T 2; n is positive, while Gr=Re is negative
for upward flow and positive for downward flow.

By employing Eqs. (28) and (33), the values of k0 as a
function of c and n have been calculated for f ¼ 0:0,
f ¼ 0:2 and f ¼ 0:4. The results are collected in Tables 1–
3, respectively. The analysis of these tables shows that k0

is an increasing function of n for small values of c. With
reference to the values of f considered in the tables, this cir-
cumstance occurs for c 6 0:4. On the other hand, k0 is not
a monotonic function of n for higher values of c. In the
limit c! 1, the annular duct tends to a parallel plane chan-
nel. In this limit, the function k0ðnÞ is symmetric with
respect to n = 0, as expected.
0.0 0.5 1.0 1.5 2.0

43.13 44.25 45.61 47.20 48.99
44.69 45.83 47.23 48.86 50.69
45.58 46.69 48.06 49.64 51.41
46.18 47.23 48.53 50.04 51.71
46.60 47.59 48.81 50.23 51.81
46.92 47.84 48.98 50.31 51.78
47.17 48.01 49.06 50.30 51.67
47.36 48.12 49.10 50.25 51.53
47.63 48.25 49.08 50.07 51.17
47.79 48.29 48.98 49.83 50.78
47.90 48.28 48.85 49.58 50.39
47.96 48.24 48.70 49.32 50.02
47.99 48.17 48.54 49.06 49.67
48.00 48.10 48.38 48.82 49.34



Table 2
Values of k0 with n ¼ 0:2

c n

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

0.050 41.68 41.91 42.35 43.02 43.94 45.11 46.51 48.13 49.94
0.100 43.30 43.56 44.02 44.72 45.66 46.86 48.30 49.96 51.79
0.150 44.38 44.64 45.08 45.75 46.66 47.83 49.23 50.84 52.61
0.200 45.22 45.45 45.86 46.48 47.34 48.44 49.77 51.30 52.98
0.250 45.91 46.11 46.47 47.04 47.83 48.86 50.11 51.54 53.11
0.300 46.51 46.67 46.97 47.48 48.20 49.15 50.31 51.65 53.11
0.350 47.02 47.14 47.39 47.83 48.48 49.35 50.43 51.67 53.03
0.400 47.48 47.55 47.75 48.12 48.70 49.50 50.49 51.64 52.90
0.500 48.27 48.24 48.33 48.57 49.02 49.66 50.50 51.48 52.56
0.600 48.93 48.80 48.77 48.90 49.21 49.73 50.42 51.26 52.18
0.700 49.48 49.26 49.13 49.14 49.34 49.73 50.29 51.00 51.79
0.800 49.95 49.64 49.41 49.32 49.41 49.69 50.15 50.74 51.41
0.900 50.36 49.96 49.63 49.45 49.45 49.63 49.99 50.48 51.05
0.999 50.71 50.22 49.82 49.55 49.46 49.55 49.82 50.23 50.72

Table 3
Values of k0 with f ¼ 0:4

c n

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

0.050 42.26 42.56 43.06 43.79 44.76 45.97 47.42 49.06 50.88
0.100 44.05 44.37 44.90 45.65 46.65 47.90 49.37 51.06 52.90
0.150 45.26 45.57 46.08 46.80 47.77 48.98 50.41 52.04 53.81
0.200 46.19 46.48 46.95 47.62 48.53 49.67 51.03 52.57 54.25
0.250 46.96 47.22 47.63 48.25 49.09 50.15 51.42 52.86 54.43
0.300 47.61 47.83 48.19 48.74 49.50 50.48 51.66 53.01 54.46
0.350 48.18 48.35 48.65 49.14 49.83 50.72 51.82 53.06 54.41
0.400 48.68 48.81 49.05 49.47 50.08 50.90 51.90 53.05 54.29
0.500 49.54 49.56 49.69 49.97 50.44 51.10 51.94 52.92 53.98
0.600 50.24 50.16 50.17 50.33 50.67 51.19 51.88 52.71 53.61
0.700 50.83 50.65 50.55 50.60 50.81 51.21 51.77 52.46 53.22
0.800 51.33 51.05 50.86 50.79 50.90 51.18 51.62 52.20 52.84
0.900 51.75 51.39 51.10 50.94 50.94 51.12 51.46 51.93 52.47
0.999 52.12 51.67 51.29 51.04 50.95 51.04 51.29 51.67 52.12

Fig. 2. Plots of k0 versus c for a fluid with constant viscosity (a), n ¼ �2
and f ¼ 0:2 (b), n ¼ 2 and f ¼ 0:2 (c).
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The effect of a temperature-dependent viscosity on the
dimensionless pressure drop, in the case of forced convec-
tion, is illustrated qualitatively in Fig. 2, where plots of
k0 versus c are reported. Plot (a) refers to a fluid with con-
stant viscosity; plot (b) refers to the case n = �2 and
f ¼ 0:2; plot (c) refers to the case n = 2 and f ¼ 0:2. Plot
(b) shows that, if the inner wall is heated (n < 0), the var-
iable viscosity reduces the viscous pressure drop for low
values of c and increases it for high values of c. Plot (c)
illustrates the case of outer wall heated (n > 0). It shows
that, in this case, the temperature-dependent viscosity
enhances the viscous pressure drop for every value of c;
for low values of c, the effect of the variable viscosity is
stronger than in the case of inner heating. The figure shows
also that, in the limit of parallel plane channel, c! 1, the
viscous pressure drop is independent of the heat flow
direction.

By employing Eqs. (29) and (33), the values of k1 as a
function of c and n have been calculated for f ¼ 0:0,
f ¼ 0:2 and f ¼ 0:4. The results are reported in Tables 4–
6, respectively. These tables show that k1 is an increasing
function of n for every pair of values of c and f. Moreover,
k1 is negative for any value of f if n 6 0 or if c 6 0:10. In



Table 4
Values of k1 � 102 with f ¼ 0:0

c n

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

0.050 �7.197 �6.538 �5.882 �5.226 �4.569 �3.910 �3.251 �2.594 �1.943
0.100 �8.169 �7.243 �6.335 �5.439 �4.551 �3.669 �2.794 �1.928 �1.073
0.150 �8.659 �7.542 �6.452 �5.384 �4.330 �3.288 �2.257 �1.239 �0.2354
0.200 �8.908 �7.647 �6.419 �5.218 �4.037 �2.872 �1.720 �0.5827 0.5382
0.250 �9.011 �7.639 �6.305 �5.001 �3.719 �2.455 �1.206 0.02775 1.245
0.300 �9.019 �7.561 �6.144 �4.757 �3.395 �2.051 �0.7230 0.5904 1.887
0.350 �8.962 �7.438 �5.954 �4.502 �3.075 �1.666 �0.2727 1.107 2.471
0.400 �8.860 �7.285 �5.749 �4.245 �2.764 �1.302 0.1455 1.581 3.002
0.500 �8.572 �6.927 �5.318 �3.738 �2.180 �0.6383 0.8921 2.413 3.925
0.600 �8.222 �6.537 �4.885 �3.257 �1.649 �0.05403 1.533 3.115 4.693
0.700 �7.846 �6.142 �4.465 �2.810 �1.170 0.4597 2.086 3.710 5.335
0.800 �7.464 �5.754 �4.067 �2.397 �0.7393 0.9124 2.563 4.217 5.876
0.900 �7.087 �5.381 �3.692 �2.017 �0.3507 1.313 2.978 4.651 6.333
0.999 �6.726 �5.028 �3.344 �1.671 �0.00334 1.664 3.338 5.021 6.718

Table 5
Values of k1 � 102 with f ¼ 0:2

c n

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

0.050 �7.087 �6.424 �5.764 �5.104 �4.444 �3.784 �3.125 �2.470 �1.822
0.100 �8.027 �7.098 �6.187 �5.288 �4.398 �3.516 �2.641 �1.778 �0.9276
0.150 �8.504 �7.385 �6.293 �5.221 �4.166 �3.123 �2.094 �1.078 �0.07980
0.200 �8.751 �7.487 �6.258 �5.054 �3.871 �2.705 �1.554 �0.4192 0.6967
0.250 �8.858 �7.484 �6.148 �4.841 �3.557 �2.291 �1.043 0.1889 1.401
0.300 �8.874 �7.415 �5.994 �4.605 �3.240 �1.894 �0.5658 0.7460 2.039
0.350 �8.829 �7.302 �5.816 �4.360 �2.930 �1.518 �0.1239 1.255 2.616
0.400 �8.739 �7.161 �5.622 �4.114 �2.630 �1.165 0.2844 1.719 3.138
0.500 �8.478 �6.830 �5.217 �3.632 �2.070 �0.5241 1.009 2.531 4.042
0.600 �8.154 �6.467 �4.810 �3.177 �1.564 0.03622 1.627 3.211 4.789
0.700 �7.803 �6.096 �4.415 �2.754 �1.109 0.5267 2.157 3.785 5.410
0.800 �7.444 �5.731 �4.039 �2.364 �0.7000 0.9574 2.613 4.271 5.931
0.900 �7.087 �5.378 �3.685 �2.004 �0.3320 1.337 3.008 4.685 6.369
0.999 �6.744 �5.044 �3.356 �1.677 �0.00316 1.671 3.349 5.037 6.737

Table 6
Values of k1 � 102 with f ¼ 0:4

c n

�2.0 �1.5 �1.0 �0.5 0.0 0.5 1.0 1.5 2.0

0.050 �6.975 �6.308 �5.644 �4.981 �4.319 �3.658 �3.000 �2.347 �1.704
0.100 �7.884 �6.952 �6.038 �5.136 �4.245 �3.363 �2.490 �1.630 �0.7853
0.150 �8.348 �7.226 �6.132 �5.058 �4.001 �2.959 �1.931 �0.9196 0.07297
0.200 �8.592 �7.327 �6.095 �4.889 �3.705 �2.539 �1.389 �0.2579 0.8525
0.250 �8.704 �7.328 �5.989 �4.680 �3.394 �2.128 �0.8806 0.3481 1.555
0.300 �8.729 �7.267 �5.844 �4.452 �3.085 �1.738 �0.4097 0.8998 2.188
0.350 �8.694 �7.166 �5.676 �4.217 �2.784 �1.371 0.02391 1.401 2.758
0.400 �8.617 �7.037 �5.494 �3.983 �2.495 �1.028 0.4224 1.856 3.272
0.500 �8.382 �6.732 �5.115 �3.526 �1.959 �0.4102 1.125 2.648 4.157
0.600 �8.085 �6.395 �4.734 �3.096 �1.478 0.1263 1.720 3.306 4.883
0.700 �7.759 �6.049 �4.364 �2.698 �1.047 0.5934 2.228 3.858 5.484
0.800 �7.423 �5.707 �4.011 �2.330 �0.6606 1.002 2.662 4.323 5.985
0.900 �7.086 �5.375 �3.677 �1.991 �0.3132 1.362 3.038 4.718 6.404
0.999 �6.760 �5.058 �3.366 �1.682 �0.00298 1.676 3.360 5.052 6.754
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the limit c! 1, the function k1ðnÞ is antisymmetric with
respect to n = 0, as expected. For a fluid with constant vis-
cosity, i.e., with n = 0 and f ¼ 0; k1 vanishes in the limit
c! 1, in agreement with the results obtained in Ref. [8].



Fig. 3. Plots of k1 versus c for a fluid with constant viscosity (a), n ¼ �2
and f ¼ 0:2 (b), n = 2 and f ¼ 0:2 (c). Fig. 4. Plots of u0 versus r with c ¼ 0:25, for a fluid with constant viscosity

(a), n ¼ �2 and f ¼ 0:2 (b), n ¼ 2 and f ¼ 0:2 (c).

Fig. 5. Plots of u1 versus r with c ¼ 0:25, for a fluid with constant viscosity
(a), n ¼ �2 and f ¼ 0:2 (b), n ¼ 2 and f ¼ 0:2 (c).
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This limit is not completely reached in Table 4, where the
highest value of c considered is 0.999.

The combined effect of buoyancy forces and of a tem-
perature-dependent viscosity on the dimensionless pressure
drop is illustrated qualitatively in Fig. 3, where plots of k1

versus c are reported. Again, plot (a) refers to a fluid with
constant viscosity; plot (b) refers to the case n = �2 and
f ¼ 0:2; plot (c) refers to the case n = 2 and f ¼ 0:2.

Plot (a) shows that, for a fluid with constant viscosity, k1

is negative for every value of c and tends to zero when
c! 1. As a consequence, buoyancy forces reduce the vis-
cous pressure drop when Gr=Re > 0 (inner heating and
upward flow, or outer heating and downward flow) and
enhance it when Gr=Re < 0. Plot (b) illustrates the effect
of variable viscosity on k1 for a case of inner heating
(T 1 > T 2, hence n < 0). It shows that, if the inner wall is
heated, for any value of c; k1 is negative and has an abso-
lute value higher that in the case of constant viscosity.
Therefore, for inner heating, the temperature-dependent
viscosity reduces the viscous pressure drop when
Gr=Re > 0 and enhances it when Gr=Re < 0. Clearly, if
Gr=Re is positive and has a sufficiently high value, negative
values of the dimensionless pressure drop k may occur, i.e.,
the difference between the pressure and the hydrostatic
pressure may increase in the flow direction. On the other
hand, plot (c) shows that, for outer heating and variable
viscosity, k1 is positive except for very low values of c.
Thus, if c is not too small, buoyancy forces enhance the vis-
cous pressure drop for upward flow and reduce it for
downward flow, so that negative values of the dimension-
less pressure drop k may occur for downward flow.

The effect of a temperature-dependent viscosity on the
velocity distribution, in the case of forced convection, is
illustrated in Fig. 4, where plots of u0 versus r are reported,
for c ¼ 0:25. Plot (a) refers to a fluid with constant viscos-
ity; plot (b) refers to the case n = �2 and f ¼ 0:2; plot (c)
refers to the case n = 2 and f ¼ 0:2. Plots (b) and (c) show
that the variable viscosity enhances the fluid velocity close
to the heated wall and reduces it close to the cooled wall.
The combined effect of buoyancy and of a temperature-
dependent viscosity on the velocity distribution is illus-
trated in Fig. 5, where plots of u1 versus r are reported,
for c ¼ 0:25. Again, plot (a) refers to a fluid with constant
viscosity; plot (b) refers to the case n ¼ �2 and f ¼ 0:2;
plot (c) refers to the case n = 2 arid f ¼ 0:2. Let us discuss
the interpretation of the figure with reference to upward
flow. In this case, U0 is positive and Gr=Re has the sign
of T 1 � T 2. Plot (a) holds both for inner heating and for
outer heating. It shows that for inner heating
ðGr=Re > 0Þ buoyancy enhances the fluid velocity close to
the inner wall and reduces it close to the outer wall. In
the neighborhood of this wall, u1 is negative and, if
Gr=Re has a sufficiently high value, a negative velocity
(flow reversal) may occur. For outer heating, Gr=Re is neg-
ative and a flow reversal may occur close to the inner wall.
Plot (b) refers to inner heating. It shows that, in this case,
the variable viscosity enhances the effect of buoyancy. Plot



Fig. 6. Plots of k versus c for inner wall heated and Gr=Re ¼ 1000, for a
fluid with constant viscosity (a), water (b) and castor oil (c).
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(c) shows that, for outer heating, the variable viscosity
reduces the effect of buoyancy. The interpretation of
Fig. 5 for downward flow, where Gr=Re and T 1 � T 2 have,
opposite signs, is left to the reader.

Finally, in Figs. 6 and 7 the effects of a variable viscosity
on the viscous pressure drop and on the velocity distribu-
tion are illustrated through specific examples, with refer-
ence to inner heating and upward flow with Gr=Re ¼
1000. Two fluids have been considered: water and castor
oil. The latter is a high-viscosity liquid, employed in food
industry. The dimensionless coefficients n and f have been
determined through the viscosity values reported in Ref.
[31], by assuming T 1 ¼ 60 �C and T 2 ¼ 20 �C. The follow-
ing values have been obtained: for water, n ¼ �0:8435
and f ¼ 0:2079; for castor oil n ¼ �2:821 and f ¼ 0:6699.
Plots of k versus c are reported in Fig. 6: plot (a) refers
to a fluid with constant viscosity, plot (b) refers to water
and plot (c) refers to castor oil. The figure shows that,
Fig. 7. Plots of u versus r for inner wall heated, c ¼ 0:25 and
Gr=Re ¼ 1000, for a fluid with constant viscosity (a), water (b) and castor
oil (c).
for inner heating and upward flow, the variable viscosity
reduces for the viscous pressure drop. Indeed, with
Gr=Re ¼ 1000, negative values of k occur for water if
0:004 6 c 6 0:472 and for castor oil for every value of c.
Plots of u versus r are reported in Fig. 7, for
Gr=Re ¼ 1000 and c ¼ 0:25, with reference to a fluid with
constant viscosity (a), to water (b), and to castor oil (c).
The figure shows that, in the conditions examined, the var-
iable viscosity enhances the fluid velocity close to the inner
wall and widens the flow reversal region close to the outer
wall.

5. Conclusions

The steady and laminar mixed convection with a tem-
perature-dependent viscosity in a vertical annular duct with
uniform wall temperatures has been studied analytically, by
assuming that the flow is purely axial and that the fluid
density is a linear function of temperature. Analytical
expressions of the dimensionless velocity distribution, of
the dimensionless pressure drop and of the Fanning fric-
tion factors have been provided. It has been pointed out
that the dimensionless pressure drop is proportional to
the cross-section-averaged Fanning friction factor only if
the mean fluid temperature in any cross-section is chosen
as the reference temperature in the linear equation of state
of the fluid. The results show that the combined effects of
buoyancy forces and of a variable viscosity on the dimen-
sionless pressure drop and on the velocity distribution
may be important, and that negative values of the viscous
pressure drop may occur for inner wall heated and upward
flow, as well as for outer wall heated and downward flow.
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